Limit Cycles of xy (mod x+y)

For any two positive integers x and y define F(x,y) = xy (mod x+y).
Given two initial values x[0] and x[1] we can form a sequence using
the recurrence
                    x[n] = F( x[n-1] , x[n-2] )

For some initial values this produces a trivial outcome.  For example, 
if  x[1] = x[0]  is odd, then  x[n] = x[0]  for all n.  Slightly less
obvious is the fact that if x[0]=2k and x[1]=2k-6 then x[n]=2k-6n for
all n up to k/3, at which point the sequence terminates with a value 
of 0.

Most initial values lead to a fixed point, but some lead to a limit
cycle.  The smallest limit cycle is {5,7,11}.  Of course, it follows
that {7,5,11} is also a limit cycle.  (I wonder if it's true that if
xy = z (mod x+y)   and   xz = y (mod x+z)   then   yz = x (mod y+z).)

Anyway, here are several examples of limit cycles with period 3 (along
with their gcd factorizations):

                 {5,7,11}            1*[5,7,11]
                 {69,99,111}         3*[23,33,37]
                 {87,111,153}        3*[29,37,51]
                 {184,704,776}       8*[23,88,97]
                 {125,475,575}       25*[5,19,23]
                 {384,864,1056}      96*[4,9,11]
                 {315,525,735}       105*[3,5,7]
                 {324,756,864}       108*[3,7,8]
                 {1575,2205,2835}    45*[35,49,63]

The smallest limit cycles with period 4 are

               {96,304,384,464}       16*[6,19,24,29]
               {128,192,256,320}      64*[2,3,4,5]
               {243,1701,1215,2187}   243*[1,7,5,9]
               {495,1375,1815,1045}   55*[9,25,33,19]
               {1331,1815,2783,2541}  121*[11,15,23,21]

There smallest examples with period 5 are

              {124,310,248,434,558}    62*[2,5,4,7,9]
              {243,621,567,549,675}    9*[27,69,63,61,75]
              {392,490,686,980,882}    14*[4,5,7,10,9]       

Here are limit cycles with periods 6 and 7:

              {23,61,59,119,79,95}     1*[23,61,59,119,79,95]

      {77,343,371,161,147,259,315}     7*[11,49,53,23,21,37,45]

The table below presents one cycle for for each of the periods 8 
through 19, and also a cycle of period 22.

  T=8, gcd=59       T=9, gcd=65      T=10, gcd=441      T=11, gcd=319

   1711    29         455    7         3087     7        15631    49
   6431   109        1235   19        10143    23        10527    33
   3599    61         845   13         9261    21        13717    43
   5959   101        1495   23        18963    43         1595     5
   7847   133        2015   31         6615    15        13079    41
  13157   223         845   13         5733    13         9251    29
   8319   141         975   15         3087     7         9889    31
  11387   193        1235   19         4851    11        13079    41
                     1885   29         3969     9         5423    17
                                       8379    19         9251    29
                                                         12441    39


 T=12, gcd=1023    T=13, gcd=71     T=14, gcd=7161     T=15, gcd=107

  17391    17       35855   505       279279    39       17441   163
  25575    25       29749   419       136059    19       13375   125
  33759    33       60563   853       393855    55       27071   253
  17391    17       54599   769       494109    69        2033    19
   3069     3       32731   461       221991    31       28783   269
  13299    13       46079   649       565719    79       27071   253
   9207     9       24779   349       708939    99       21293   199
  11253    11       56587   797       594363    83       20651   193
  17391    17       70361   991       451143    63       22791   213
   5115     5       47783   673       737583   103        6313    59
  11253    11       35855   505        93093    13       18511   173
   9207     9       18673   263       136059    19       13375   125
                    25631   361       221991    31       21721   203
                                      207669    29       28783   269
                                                         6527     61


T=16, gcd=12051    T=17, gcd=75087   T=18, gcd=551   T=19, gcd=4875

  445887    37     2027349    27      143811   261      375375    77
  397683    33     1276479    17      330049   599      687375   141
  735111    61     3078567    41       15979    29      443625    91
 1000233    83     2628045    35       40223    73     1038375   213
 1409967   117      675783     9       53447    97      531375   109
  735111    61     2177523    29       72181   131      960375   197
 2012517   167      375435     5       73283   133      541125   111
 1554579   129     2477871    33      132791   241      258375    53
 2374047   197     1877175    25       96425   175      609375   125
 1988415   165     3679263    49      137199   249      102375    21
 1072539    89     1426653    19      220951   401      589875   121
  277173    23     1877175    25       82099   149       24375     5
  735111    61      976131    13      192299   349      453375    93
  397683    33     1276479    17       66671   121      180375    37
 1000233    83     2027349    27      197809   359      316875    65
   60255     5     3078567    41       93119   169      424125    87
                    976131    13      251807   457      180375    37
                                      291479   529      258375    53
                                                        365625    75

   T=22, gcd=1129

   624337   553
   649175   575
  1136903  1007
   495631   439
   567887   503
   235961   209
   134351   119
   296927   263
    86933    77
    89191    79
   134351   119
   154673   137
   224671   199
   351119   311
   147899   131
   339829   301
   486599   431
   473051   419
   655949   581
   712399   631
  1096259   971
   716915   635

It can be shown that there exists a cycle of length n for every positive
integer n.  See More Results on the Form xy (mod x+y).

There is an interesting class of cycles of period 9, in which the cycle consists
of just four distinct numbers in the pattern A BC A DB A CD.  Several examples
are shown below

  3575  9295  12155  3575  7865  9295  3575  12155  7865      5 11 13
     5    13     17     5    11    13     5     17    11

  8381  5423  7395  8381  9367  5423  8381  7395  9367        17 29
    17    11    15    17    19    11    17    15    19

  8300  5810  9130  8300  10790  5810  8300  9130  10790       2 5 83
    10     7    11    10     13     7    10    11     13

  52731  29295  41013  52731  76167  29295  52731  41013  76167       3 3 3 7 31
      9      5      7      9     13      5      9      7     13

  72471  123627  46893  72471  89523  123627  72471  46893  89523      3 7 7 29
     17      29     11     17     21      29     17     11     21

 132759  122925  113091  132759  34419  122925  132759  113091  34419     3 11 149
     27      25      23      27      7      25      27      23      7

 106029  82467  129591  106029  223839  82467  106029  129591  223839    3 3 7 11 17
      9      7      11       9      19      7       9      11      19

 197519  245891  116899  197519  173333  245891  197519  116899  173333   29 139
     49      61      29      49      43      61      49      29      43

 931095  517275  1344915  931095  1138005  517275  931095  1344915  1138005     3 3 5 11 11 19
      9       5       13       9       11       5       9       13       11

 1576575  735735  1156155  1576575  1366365  735735  1576575  1156155  1366365    3 5 7 7 11 13
      15       7       11       15       13       7       15       11       13


In many of these cycles the reduced term appearing three times (i.e., the 
"A" term of the cycle) is the product of the first two or three prime divisors 
of the cycle's greatest common divisor.

Another interesting cycle of period 9 is shown below.  In this cycle the
greatest common divisor of the cycle is one of the terms of the cycle.

 80087  51821  98931  80087  108353  4711  80087  23555  61243      7 673
    17     11     21     17      23     1     17      5     13


Return to MathPages Main Menu